A FRAMEWORK FOR BUILDING MECHANISMS TO MEASURE EMISSIONS FOR RIDE-HAILING

Summary of Methods and Data Used for Transportation Emission Calculation

BACKGROUND:

- With the urgency and implementation of better waste and pollution efficiency and the potential to improve air quality in cities like Jakarta, there is now a strong need to properly measure transportation (including ride-hailing) emissions to comprehend its impact in combatting our climate crisis.
- Emissions Calculator performs this task by using various emission-related factors to output data on carbon emissions related to mobility, mode used, carbon sequestration, etc.

ASSUMPTIONS:

Within the calculator, estimates gathered from various studies and analyses were used for:

- Fuel economy of vehicles
- CO2 emissions per unit fuel consumed (alias CO2 emission factor)
- Number of passengers per public transport type
- All cars have large petrol engine (>2.1 liters)
- All buses are fueled by diesel and used for long distance trips

Factors for calculations and what they mean:	
Fuel economy	Type of vehicle, person size of vehicle, type of fuel used
Distance travelled	How much distance the trip covered
CO2 emission factor	How much CO2 is emitted per unit fuel burned by the vehicle
Number of passengers	How many occupants were in the vehicle (excluding driver)
Tree sequestration rate	How much CO2 is absorbed by a tree over a given period, usually per year

PRELIMINARY LIMITATIONS:

Within the calculator, variable factors listed below should affect emission figures but considered to remain unchanged to simplify analyses:

- Extra distance drivers take between app pick-up \& meeting points
- Congestion affecting driving behavior and fuel use
- Engine maintenance affecting energy efficiency
- Extra weight from ride-hailers in different vehicle

Further details are encouraged, to improve measurement qualities while maintaining simplicity of the method.

DATA FOR EMISSION CALCULATION:

Fuel Emission Factor $^{\mathbf{1}}$	$\mathbf{k g ~ C O}_{\mathbf{2}}$ /liter
Diesel	2.68
Petrol/Gasoline	2.34

Size of Fuel Engine	kg CO2 per passenger km
Small (<1.4 L)	$0.12-0.17$
Medium $(1.4-2.1 \mathrm{~L})$	0.22
Large $(>2.1 \mathrm{~L})$	$0.14-0.27$

Fuel Efficiency Values ${ }^{3}$	Kilometer per liter (kpl)
New small gas/petrol/electric hybrid	23.8
Small gas/petrol, highway	13.6
Small gas/petrol, city	11.1
Medium gas/petrol, highway	12.7
Medium gas/petrol, city	9.3
Large gas/petrol, highway	10.6
Large gas/petrol, city	7.6
Liquid Petroleum Gas (LPG)	8.9
Diesel	10.2

CALCULATION EQUATION FOR CARS / MOTORBIKES	
Step 1: Total fuel use	$\frac{\text { DISTANCE TRAVELLED (KM) }}{\text { FUEL EFFICIENCY (KM PER LITER FUEL) }}$
Step 2: Individual fuel use per trip	$\frac{\text { TOTAL FUEL USE (LITER) }}{\text { NUMBER OF PASSENGER }}$
Step 3: Individual emission per trip	INDIVIDUAL FUEL USE * CO2 EMISSION FACTOR

CALCULATION EQUATION FOR TREE SEQUESTRATION

Amounts of trees needed for sequestration

TOTAL EMISSION RELEASE $\overline{\text { TREE SEQUESTRATION RATE *TIME }}$

EXAMPLE EMISSIONS CALCULATION RESULTS	
Individual emission from ridehailing in mediumsized petrol car	7.0 км (Example average distance of ride-hailing trip ${ }^{4}$) / 9.3 км/LTter (Fuel efficiency) / 2 (number of riders) * $\mathbf{2 . 3 4}$ кG coz/ІІев (CO2 emission factor) $=\mathbf{0 . 8 8}$ KG CO2
Individual emission from total 5 KM ride in sharing ridehailing in mediumsized petrol car with 3 riders	Passenger B: $\mathbf{2}$ км/9.3 км/Ітев * $\mathbf{2 . 3 4}$ кє сог/Ітев/2 (Number of riders in leg 2) + $\mathbf{1}$ км кє coz/LTter / 2 (Number of riders in leg 4) $=0.58$ KG CO2 Passenger C: 1 км/ 9.3 км/LTter * 2.34 кG сог/LIter/3 (Number of riders in leg 3) +2 км кG coz/Liter/ $\mathbf{1}$ (Number of riders in leg 5) $=\mathbf{0 . 8 3}$ KG CO2 Total emissions for 3 people using shared ride-hailing: 2.24 KG of CO2
Example of emissions saved from sharing ridehailing service.	Emissions saved compared to 3 separate trips with 5 KM: ($0.88^{*} 3$) - $2.24=0.4$ KG of CO2 15\% emissions saved!

EXAMPLE EMISSIONS CALCULATION RESULTS

Passenger A: $\mathbf{2}$ км/9.3 км/итев * 2.34 кє сог/итев/ 1 (Number of riders in leg 1) + 2 км /9.3 км/итеR * 2.34 кG coz/Lter / 2 (Number of riders in leg 2) +1 км $/ 9.3$ км/LTter * 2.34 Passenger B: $\mathbf{2}$ км $/ 9.3$ км/Ітев * 2.34 кє соz/LIter / 2 (Number of riders in leg 2) $+\mathbf{1}$ км /9.3 км/LTter * 2.34 кє coz/Lter $/ 3$ (Number of riders in leg 3) +2 км $/ 9.3$ км/LTter $* 2.34$ кG coz/LIter / 2 (Number of riders in leg 4) $=0.58$ KG cO2

Passenger C: 1 км/ 9.3 км/итев * 2.34 кє сог/иттв / 3 (Number of riders in leg 3) + 2 км кG coz/LIter $/ \mathbf{1}$ (Number of riders in leg 5) = 0.83 KG CO2
g: 2.24 KG of CO2

Example of
emissions saved from haring rideservice.

CASE EXAMPLE - RIDE SHARING TO EMISSIONS OFFSET	
TOTAL car ride-hailing-related annual emissions	750 Million $к м$ (Example assumed total annual distance travelled by ride-hailing car ${ }^{5}$) / 9.3 км/LTте (Average fuel efficiency of medium-sized petrol car)/ 1 (number of riders) * 2.34 кє coz/LIter (CO2 emission factor) $=\mathbf{1 8 8 . 7}$ Million KG CO2
Emission Saved from 20\% of rides ${ }^{6}$ using shared ride-hailing (using example calculation as assumption)	20\%) + $\mathbf{1 8 8 . 7}$ million кG of co2 *20\% * 15% (Emission from 20% of rides with sharing ridehailing car) $=183.04$ Million KG CO2 5.66 Million KG of CO2 saved!
Number of trees required for total sequestration of ride-hailing car's total annual emissions	MANGO TREE: 188.7 million кG CO2 (Total annual ride-hailing car emission) / 445 кG cо2 per year? (Annual sequestration rate) $=424,044$ Trees planted per year FICUS TREE: 188.7 million kg coz (Total annual ride-hailing car emission) / 535.9 кє coz per year? (Annual sequestration rate) $=352,117$ Trees planted per year YLANG YLANG TREE: 188.7 million кg coz (Total annual ride-hailing car emission) / 756.6 кG co2 per year ${ }^{7}$ (Annual sequestration rate) $=\mathbf{2 4 9}$,405 Trees planted per year

RESULTS AND CONCLUSION:

- Through the Emissions Calculator, with the assumption of 750 million KM distance, we found that car ride-hailing total annual emissions would be 188.7 million KG CO2.
- Through the example of shared car ride-hailing emission release, we can see that there is a good potential of avoiding 5.66 Million KG CO2.
- That is the equivalent to the yearly carbon sequestration rate of $\mathbf{1 2 , 7 2 2}$ mango trees.
- Implementing shared ride-hailing and other emission-reducing services and mixed with carbon offsetting measures, provides enormous opportunity for ride-hailing companies to be leaders for sustainability in transportation and mobility industry.
- Greater accuracy can be incorporated if the Emission Calculator can be used in tandem with ride-hailing industry model data, allowing for accurate emission tracking of individual driver's vehicles.

REFERENCES:

1) Source: Energy Information Administration, Emissions of Greenhouse Gases in the United States 2000, Appendix B, Table B1
2) "Source for diesel: Bureau of Transportation, National Transportation Statistics for 2000. Source for CNG: Revised IPCC, 1996, Vol. 2, Table 1-2."
3) Source: miles per gallon for typical vehicles based on averages from US EPA 2001 Guide. http://www.epa.gov/autoemissions.
4) Calculations based on use of ride-hailing in WRI internally
5) WRI calculations based on road vehicles quantity
6) A ballpark potential number taken from surveys
7) WRI Emissions Calculator Tree Reference
